LA-UR-21-23034 Approved for public release; distribution is unlimited. Title: Nuclear Data Needs for Radiochemistry Author(s): Keksis, August Lawrence Parsons, Donald Kent Frankle, Stephanie Cate Intended for: Report Issued: 2021-03-30 Memorandum DICER-LDRD-DR To: DICER Collaboration August Keksis, C-NR From: Kent Parsons. XCP-5 Kent Parsons, XCP-5 Stephanie Frankle, XTD-IDA **Phone:** 505-606-2038 Symbol: LA-UR-21-XXXXX Date: March 29, 2021 #### **Subject: Nuclear Data Needs for Radiochemistry** There are many elements of interest to the weapons community that include light elements, activation products, fission products, actinides and heavy elements. Of course, that is the whole periodic table! In this memo we summarize a down-selected list, 22 of 118+ of elements that have or could serve as radiochemical diagnostic measurements. The simulations would need cross sections for nuclides (and metastable states) of these elements to be able to calculate values for comparison with debris measurements. The purpose of this memo is to: - 1. Allow the experimental community to provide input on what is possible and not possible, due to half-lives, for example, as well as current experimental and target production constraints. - 2. Allow the nuclear theory community to provide input on what measurements they would need to constrain their models to predict cross sections for the nuclides of interest. The goal is to be able to go after low hanging fruit and help set expectations and needs for future challenging measurements and associated costs to accomplish them. A classified memo will also be generated. In the sections below we provide an alphabetized list of elements along with their nuclides that are of interest. Also included are what cross sections libraries are currently available at LANL through the XCP-5 nuclear data team for each nuclide. Note that a new library does not mean that a new evaluation has been performed for a given isotope. We have included information on the evaluation used for each isotope and library to the extent possible. Note that Ed Arthur from the LANL group T-2 provided a number of evaluations from 1978-1984. We have used "LANL 1980" as a designator for these evaluations as it is difficult to establish the specific year for each. It is also worthwhile to mention that for the historical libraries CRSDATA, Y21GRP_N and Y21GRP the binary data library format at the time only allowed for a limited number of reactions. Hence, different choices were made between LLNL and LANL about how to include the sum of multiple reactions for an isotope into one of those limited slots (Seamon 1989). Unfortunately, when modern libraries have been created and used historic data these same limitations may exist in the data set as it was a translation from the binary format to the modern format and not a complete reprocessing of the historical evaluations. We ask the theory and experimental communities to fill out their "needs" or "requirements" to calculate or measure each of the listed nuclides. Then an updated version of this memo can provide a foundation upon to request funding to support theoretical calculations and experimental measurements to fill in holes and provide better data. We will also continue adding more production/depletion chain figures and references to documentation for each nuclide. # Table of Contents | Ag - Silver (Z = 47) | 3 | |-------------------------|----| | As – Arsenic (Z = 33) | 5 | | Au – Gold (Z = 79) | 6 | | Bi – Bismuth (Z = 83) | 8 | | Ca – Calcium (Z = 20) | 9 | | Eu – Europium (Z = 63) | 11 | | Ir – Iridium (Z = 77) | 13 | | Lu – Lutetium (Z = 71) | 16 | | Nb – Niobium (Z = 41) | 18 | | Pb – Lead (Z = 82) | 19 | | Rb – Rubidium (Z = 37) | 20 | | Re – Rhenium (Z = 75) | 21 | | Rh – Rhodium (Z = 45) | 22 | | Sc – Scandium (Z = 21) | 24 | | Ta – Tantalum (Z = 73) | 26 | | Tb – Terbium (Z = 65) | 28 | | TI – Thallium (Z = 81) | 29 | | Tm – Thulium (Z = 69) | 30 | | V – Vanadium (Z = 23) | 32 | | W – Tungsten (Z = 74) | 33 | | Y – Yttrium (Z = 39) | 35 | | Zr – Zirconium (Z = 40) | 39 | | References | 41 | | Distribution | 42 | Ag - Silver (Z = 47) Table V Production/Depletion for Silver Isotopes | Reaction | Target | Product | Target | Reaction | Product | MT Reactions | ZAID on
Dosimetry Files | |----------------------------------|----------------|------------------------------|--------|--|---|---|----------------------------| | | 1 | | 104gAg | | | | 0.00 | | | 2 | | 105gAg | | | | 0.00 | | 1
2
3 | 3 3 2 | 2
1
5 | 106mAg | (n,2n)
(n,3n)
(n,g) | 105gAg
104gAg
107gAg | 16
17 See Not
102 | 47106.313 | | 4
5
6 | 4 | 2
1
5 | 106gAg | (n,2n)
(n,3n)
(n,g) | 105gAg
104gAg
107gAg | 16
17 See Not
102 | 47106.303 | | 7
8
9
10
11 | 555555 | 4
3
2
FPP
6
7 | 107gAg | (n,2n)
(n,2n)
(n,3n)
(n,ds)
(n,g)
(n,g) | 106gAg
106mAg
105gAg
FPP
108mAg
108gAg | 16
1016
17 See Not
103, 107
102
1102 | 47107.303 | | 13
14
15 | 6
6 | 5
4
8 | 108mAg | (n,2n)
(n,3n)
(n,g) | 107gAg
106gAg
109gAg | 16
17
102 | 47108.313 | | 16
17
18 | 7
7
7 | 5
4
8 | 108gAg | (n,2n)
(n,3n)
(n,g) | 107gAg
106gAg
109gAg | 16
17
102 | 47108.303 | | 19
20
21
22
23
24 | 8 8 8 8 8 8 | 7
6
5
FPP
9 | 109gAg | (n,2n)
(n,2n)
(n,3n)
(n,ds)
(n,g)
(n,g) | 108gAg
108mAg
107gAg
PPP
110mAg
110gAg | 16
1016
17
103, 107
102
1102 | 47109.303 | | 25
26
27 | 9
9 | 8
7
11 | 110mAg | (n,2n)
(n,3n)
(n,g) | 109gAg
108gAg
111gAg | 16
17
102 | 47110.313 | | 28
29
30 | 10
10
10 | 8
7
11 | 110gAg | (n,2n)
(n,3n)
(n,g) | 109gAg
108gAg
111gAg | 16
17
102 | 47110.303 | | | 11 | | 111gAg | | | | 0.00 | Note: Threshold for this reaction is above 17.0 MeV | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 104
(1.15 h) | - | | | | | | 105
(41.3 d) | - | | | | | | 106
(8.28 d) | crsdata | ACTL - 1978 | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 106m
(24 m) | crsdata | ACTL - 1978 | | | | 107
(51.84%) | | crsdata | ACTL - 1978 | | | | | 108
(438 y) | crsdata | ACTL - 1978 | | | | | 108m
(2.39 m) | crsdata | ACTL - 1978 | | | | 109
(48.16%) | | crsdata | ACTL - 1978 | | | | | 110
(249.8 d) | crsdata | ACTL - 1978 | | | | | 110m
(24.6 s) | crsdata | ACTL - 1978 | | | | | 111
(7.47 d) | - | | | | #### As - Arsenic (Z = 33) Arsenic chain by (Mroz 1992), just showing the (n,2n) reactions from the stable. Arsenic chain from (Lee 2013) that includes the (n,3n) and the green lines include both the (n,2n) and (n,g) reactions. The As data main sources are (Herring 2008) for the mendf80 and (White 2004) for the CRSData. | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|------------------|----------------------|-----------------------| | | 72 | - | | | | | | (26 h) | | | | | | | 73 | mendf80 | Created from | | | | | (80.3 d) | | ENDF/B-VII.0 for | | | | | | | As-75 and As-73 | | | | | | | from LANL 1980 | | | | | 74 | mendf80 | ENDF/B-VII.0 | | | | | (17.78 d) | crsdata | LANL 1980 | | | | 75 | | mendf80 | ENDF/B-VII.0 | | | | (100%) | | crsdata | LANL 1980 | | | Au - Gold (Z = 79) Table IX Production/Depletion for Gold Isotopes | Reaction | Target | Product | Target
192gAu | Reaction | Product | MT Reactions | ZAID on
Dosimetry Files | |----------------------------|------------------|-------------------------|------------------|---------------------------|---|------------------------------|----------------------------| | | | _ | | | | | 0.00 | | 1 | 2 | 3 | 193gAu | (n,g) | 194gAu | 102 | 79193.303 | | 2
3
4 | 3 | 2
1
4 | 194gAu | (n,2n)
(n,3n)
(n,g) | 193gAu
192gAu
195gAu | 16
17
102 | 79194.303 | | 5
6
7 | 4
4
4 | 3
2
6 | 195gAu | (n,2n)
(n,3n)
(n,g) | 194gAu
193gAu
196gAu | 16
17
102 | 79195.303 | | 8
9
10 | 5
5
5 | 4
3
7 | 196mAu | (n,2n)
(n,3n)
(n,g) | 195gAu
194gAu
197gAu | 16
17
102 | 79196.313 | | 11
12
13 | 6
6 | 4
3
7 | 196gAu | (n,2n)
(n,3n)
(n,g) | 195gAu
194gAu
197gAu | 16
17
102 | 79196.303 | | 14
15
16
17
18 | 7
7
7
7 | 6
5
4
FPP
8 | 197gAu | | 196gAu
196mAu
195gAu
FPP
198gAu | 16
1016
17
103, 107 | 79197.303 | | 19
20
21 | 8
8
8 | 7
6
9 | 198gAu | (n.3n) | 197gAu
196gAu
199gAu | 16
17
102 | 79198.303 | | 22
23
24 | 9
9 | 8
7
10 | 199gAu | (n,3n) | 198gAu
197gAu
200gAu | 16
17
102 | 79199,303 | | 25 | 10 | 9 ; | 200gAu | (n,2n) | 199gAu | 16 | 79200.303 |
 Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 193
(17.6 h) | crsdata | ACTL - 1978 | | | | | 194
(1.58 d) | crsdata | ACTL - 1978 | | | | | 195
(166.12 d) | crsdata | ACTL - 1978 | | | | | 196
(6.167 d) | crsdata | ACTL - 1978 | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 196m
(9.6 h) | crsdata | ACTL - 1978 | | | | 197
(100%) | | crsdata | ACTL - 1978 | | | | | 198
(2.6949 d) | crsdata | ACTL - 1978 | | | | | 199
(3.14 d) | crsdata | ACTL - 1978 | | | | | 200
(18.7 h) | crsdata | ACTL - 1978 | | | ## Bi - Bismuth (Z = 83) #### Production/Depletion for Bismuth Isotopes | Reaction | Target | Product | Target | Resction | Product | MT Reactions | ZAID on
Dosimetry Files | |-----------------------|------------------|-------------------------|---------|--|---|---------------------------------------|----------------------------| | | 1 | | 206gB1 | | | | 0.00 | | | 2 | | 207gB1 | | | | 0.00 | | 1
2
3
4 | 3
3
3 | 2
1
FPP
4 | 208gB1 | (n,2n)
(n,3n)
(n,ds)
(n,g) | 207gB1
206gB1
FPP
209gB1 | 16
17
28,22,103,107
102 | 83208.303 | | 5
6
7
8
9 | 4
4
4
4 | 3
2
FPP
6
5 | 209gB i | (n,2n)
(n,3n)
(n,ds)
(n,g)
(n,g) | 208g81
207g81
FPP
210g81
210m81 | 16
17
22,103,107
102
1102 | 83209.303 | | 10
11
12
13 | 5
5
5 | 4
3
FPP
7 | 210mBi | (n.2n)
(n.3n)
(n.ds)
(n.g) | 209gB1
208gB1
FPP
211gB1 | 16
17
28,22,103,107
102 | - 83210.313 | | 14
15
16
17 | 6
6
6 | 4
3
FPP
7 | 210gB1 | (n.2n)
(n.3n)
(n.ds)
(n.g) | 209g81
208g81
FPP
211g81 | 16
17
28,22,103,107
102 | 83210.303 | | | 7 | | 211gB1 | | | | 0.00 | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 204
(11.2 h) | - | | | | | | 205
(15.31 d) | - | | | | | | 206
(6.243 d) | - | | | | | | 207
(32 y) | - | | | | | | 208
(3.58 10 ⁵ y) | crsdata | ACTL - 1978 | | | | 209
(100%) | | crsdata | ACTL - 1978 | | | | | 210
(3 10 ⁵ y) | crsdata | ACTL - 1978 | | | | | 210m
(5.01 d) | crsdata | ACTL - 1978 | | | ## Ca - Calcium (Z = 20) #### Production/Depletion for Calcium Isotopes | Reaction | Target | Product | Target | Reaction | Product | MT Reactions | ZAID on
Dosimetry Files | |----------------|----------------|-----------------|----------------|---------------------------|-----------------------|--------------------------------|----------------------------| | | 1 | | 38gCa | | | | 0.00 | | 1
2
3 | 2
2
2 | 1
FPP
3 | 39gCa | (n.2n)
(n.ds)
(n.g) | 38gCa
FPP
40gCa | 16
28.22,103,107
102 | 20039 . 303 | | 4
5
6 | 3
3 | 2
FPP
4 | 40gCa | (n,2n)
(n,ds)
(n,g) | 39gCa
FPP
41gCa | 16
28,22,103,105,107
102 | 20040.303 | | 7
8
9 | 4
4
4 | 3
FPP
5 | 41gCa | (n.2n)
(n.ds)
(n,g) | 40gCa
FPP
42gCa | 16
28.22,103,105,107
102 | 20041.303 | | 10
11
12 | 5
5
5 | 5
6 | 42gCa | (n,2n)
(n,ds)
(n,g) | 41gCa
FPP
43gCa | 16
28,22,103,107
102 | 20042.303 | | 13
14
15 | 6
6 | 5
FPP
7 | 43gCa | (n,2n)
(n,ds)
(n,g) | 42gCa
FPP
44gCa | 16
22,103,104,107
102 | 20043.303 | | 16
17
18 | 7
7
7 | 6
FPP
8 | 44gCa | (n,2n)
(n,ds)
(n,g) | 43gCa
FPP
45gCa | 16
103,104,107
102 | 20044.303 | | 19
20
21 | 8
8
8 | 7
FPP
9 | 45gCa | (n,2n)
(n,ds)
(n,g) | 44gCa
FPP
46gCa | 16
103,104,107
102 | 20045.303 | | 22
23
24 | 9
9 | 8
FPP
10 | 46gCa | (n,2n)
(n,ds)
(n,g) | 45gCa
FPP
47gCa | 16
103.107
102 | 20046.303 | | 25
26
27 | 10
10
10 | 9
FPP
11 | 47 <i>g</i> Ca | (n,2n)
(n,ds)
(n,g) | 46gCa
FPP
48gCa | 16
103
102 | 20047.303 | | 28
29
30 | 11
11
11 | 10
FPP
12 | 48gCa | (n,2n)
(n,ds)
(n,g) | 47gCa
FPP
49gCa | 16
103
102 | 20048.303 | | 31 | 12 | 11 | 49gCa | (n,2n)
(n,g) | 48gCa
50gCa | 16
102 | 20049.303 | | | 13 | | 50gCa | | | | 0.00 | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 39
(0.861 s) | crsdata | ACTL - 1978 | | | | 40
(96.941%) | | crsdata | ACTL - 1978 | | | | | 41
(1.03 10 ⁵ y) | crsdata | ACTL - 1978 | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | 42
(0.647%) | | crsdata | ACTL - 1978 | | | | 43
(0.135%) | | crsdata | ACTL - 1978 | | | | 44
(2.086%) | | crsdata | ACTL - 1978 | | | | | 45
(162.7 d) | crsdata | ACTL - 1978 | | | | 46
(0.004%) | | crsdata | ACTL - 1978 | | | | | 47
(4.536 d) | crsdata | ACTL - 1978 | | | | 48
(0.187%) | | crsdata | ACTL - 1978 | | | | | 49
(8.72 m) | crsdata | ACTL - 1978 | | | ## Eu - Europium (Z = 63) Production/Depletion for Europium Isotopes | Reaction | | Product | | Reaction | Product | MT Reactions | ZAID on
Dosimetry Files | |-------------------------|------------------|-------------------------|--------|---|-----------------------------------|-------------------------------------|----------------------------| | | 1 | | 149gEu | | | | 0.00 | | | 2 | | 150mEu | | | | 0.00 | | | 3 | | 150gEu | | | | 0.00 | | 1
2
3 | 4 4 | 3 2 1 | 151gEu | (n,2n)
(n,2n)
(n,3n) | 150gEu
150mEu
149gEu | 16
1016 See N | 63151.303
lote | | 23456 | 4 4 | FPP
5
6 | | (n,ds)
(n,g)
(n,g) | FPP
152mEu
152gEu | 28,22,103,104,1
102
1102 | 05,106,107 | | | 5 | | 152mEu | | | | 0.00 | | | 6 | | 152gEu | | | | 0.00 | | 7
8
9
10
11 | 7
7
7
7 | 6
5
4
FPP
8 | 153gEu | (n,2n)
(n,2n)
(n,3n)
(n,ds)
(n,g) | 152gEu
152mEu
151gEu
FPP | 16
1016
17
28.22,103,104,1 | 63153.303 | | | 8 | - | 154gEu | (11,9) | 154gEu | 102 | 0.00 | | | | | | | | | 0.00 | Note: The numerical values for this cross section are identical to those for MT=16 immediately above. | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 146 | - | | | | | | (4.57 d) | | | | | | | 147 | - | | | | | | (24.4 d) | | | | | | | 148 | - | | | | | | (54.5 d) | | | | | | | 149 | - | | | | | | (93.1 d) | | | | | | | 150 | - | | | | | | (38 y) | | | | | | | 150m | - | | | | | | (12.8 h) | _ | | | | | 151 | | crsdata | ACTL - 1978 | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | (47.81%) | | | | | | | | 152
(13.54 y) | - | | | | | 153
(52.19%) | | crsdata | ACTL - 1978 | | | | | 154
(8.50 y) | - | | | | | | 155
(4.75 y) | - | | | | | | 156
(15.2 d) | - | | | | | | 157
(15.18 h) | - | | | | $$Ir - Iridium (Z = 77)$$ $$(m3)^{\frac{(11)-, 3.087h}{}}$$ | | | | 11/2-, 10.53d | |-----------------------------|--------------|-----------|---------------| | $(m2) \frac{(4)+, 1.4ms}{}$ | | 1-, 1.45m | | | (m1) <u>(1-), 1.12h</u> | | | | | (g) 4-, 11.78d | 3/2+, stable | 4+, 73.8d | 3/2+, stable | | Ir190 | Ir191 | Ir192 | Ir193 | FIG. 6: The ground states and isomers of iridium isotopes. Figure from (Chadwick, Frankle et al. 2007). Original Y, Ir, and Tm evaluations were performed 1979-1981 by Ed Arthur in T-2 at LANL. From the original evaluations, what is in y21grp is the same for Ir as those original evaluations. Validation of some cross sections is discussed in (Chadwick, Frankle et al. 2007). The RC2004_618 is discussed in (Trellue and White 2006) and (Trellue and White 2006). The t16_rc_2004
data is discussed in (White 2005) and in (Talou, Kawano et al. 2006). Reviews of the chains were done by (Little and Seamon 1986). | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated
Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|-------------------|----------------------|-----------------------| | | 188 | rc2006_618 | LANL 1980 | | | | | (1.72 d) | rc2004_618 | LANL 1980 | | | | | | t16_rc_2004 | LANL 1980 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | Stable | Radioactive | Cross | Evaluated | Theoretical | Experimental | |----------------------|-------------------------|------------------------|------------------------|-------------|--------------| | Isotopes
(Percent | Isotopes of
Interest | Section
Libraries | Data | Needs | Needs | | Abundance) | (Half-Life) | | | | | | | 189 | rc2006_618 | LANL 1980 | | | | | (13.2 d) | rc2004_618 | LANL 1980 | | | | | | t16_rc_2004 | LANL 1980 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | 190 | rc2006_618 | LANL 1980 | | | | | (11.8 d) | rc2004_618 | LANL 1980 | | | | | | t16_rc_2004 | LANL 1980 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | 191 | | rc2006_618 | LANL 2006 | | | | (37.3%) | | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | 192 | rc2006_618 | LANL 1980 | | | | | (73.83 d) | rc2004_618 | LANL 1980 | | | | | | t16_rc_2004 | LANL 1980 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | 193 | | rc2006_618 | LANL 2006 | | | | (62.7%) | | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | 40- | y21grp_n | LANL 1980 | | | | | 193m | rc2006_618 | LANL 2006 | | | | | (10.53 d) | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata
y21grp | LANL 1980
LANL 1980 | | | | | | | LANL 1980
LANL 1980 | | | | | 404 | y21grp_n | | | | | | 194 | rc2006_618 | LANL 1980 | | | | | (171 d) | rc2004_618 | LANL 1980 | | | | | | t16_rc_2004
crsdata | LANL 1980 | | | | | | y21grp | LANL 1980
LANL 1980 | | | | | | y21grp_n | LANL 1980
LANL 1980 | | | | | | yz igip_li | LAINL 1900 | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated
Data | Theoretical
Needs | Experimental
Needs | |--|---|--|--|----------------------|-----------------------| | | 194m
(19.3 h) | mendf80 | Unavailable | | | | | 195
(3.9 h) | rc2006_618
rc2004_618
t16_rc_2004
crsdata
y21grp
y21grp_n | LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980 | | | ## Lu - Lutetium (Z = 71) | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 170 | crsdata | ACTL - 1978 | | | | | (2.01 d) | y21grp_n | ACTL - 1978 | | | | | 171 | crsdata | ACTL - 1978 | | | | | (8.24 d) | y21grp_n | ACTL - 1978 | | | | | 172 | crsdata | ACTL - 1978 | | | | | (6.70 d) | y21grp_n | ACTL - 1978 | | | | | 172m3 | crsdata | ACTL - 1978 | | | | | | y21grp_n | ACTL - 1978 | | | | | 172m2 | crsdata | ACTL - 1978 | | | | | | y21grp_n | ACTL - 1978 | | | | | 172m1 | crsdata | ACTL - 1978 | | | | | | y21grp_n | ACTL - 1978 | | | | | 173 | crsdata | ACTL - 1978 | | | | | (1.37 y) | y21grp_n | ACTL - 1978 | | | | | 173m2 | crsdata | ACTL - 1978 | | | | | | y21grp_n | ACTL - 1978 | | | | | 173m1 | crsdata | ACTL - 1978 | | | | | | y21grp_n | ACTL - 1978 | | | | | 174 | crsdata | ACTL - 1978 | | | | | (3.3 y) | y21grp_n | ACTL - 1978 | | | | | 174m3 | crsdata | ACTL - 1978 | | | | | | y21grp_n | ACTL - 1978 | | | | | 174m2 | crsdata | ACTL - 1978 | | | | | | y21grp_n | ACTL - 1978 | | | | | 174m1 | crsdata | ACTL - 1978 | | | | | | y21grp_n | ACTL - 1978 | | | | 175 | | crsdata | ACTL - 1978 | | | | (97.41%) | | y21grp_n | ACTL - 1978 | | | | | 175m2 | crsdata | ACTL - 1978 | | | | | | y21grp_n | ACTL - 1978 | | | | | 175m1 | crsdata | ACTL - 1978 | | | | | | y21grp_n | ACTL - 1978 | | | | 176 | | crsdata | ACTL - 1978 | | | | (2.59% | | y21grp_n | ACTL - 1978 | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------------------|----------------------|-----------------------| | | 176m1 | crsdata
y21grp_n | ACTL - 1978
ACTL - 1978 | | | | | 177
(160.7 d) | crsdata
y21grp_n | ACTL - 1978
ACTL - 1978 | | | | | 177m2 | crsdata
y21grp_n | ACTL - 1978
ACTL - 1978 | | | | | 177m1 | crsdata
y21grp_n | ACTL - 1978
ACTL - 1978 | | | | | 178
(28.5 m) | crsdata
y21grp_n | ACTL - 1978
ACTL - 1978 | | | | | 178m1 | crsdata
y21grp_n | ACTL - 1978
ACTL - 1978 | | | | | 179
(4.6 h) | crsdata
y21grp_n | ACTL - 1978
ACTL - 1978 | | | # Nb - Niobium (Z = 41) The Nb chain is discussed in (Seamon 1988). | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 90
(14.6 h) | - | | | | | | 91
(62 d) | crsdata | ACTL - 1978 | | | | | 91m | crsdata | ACTL - 1978 | | | | | 92
(10.13 d) | crsdata | ACTL - 1978 | | | | | 92m | crsdata | ACTL - 1978 | | | | 93
(100%) | | crsdata | ACTL - 1978 | | | | | 94
(6.253 m) | crsdata | ACTL - 1978 | | | | | 95
(34.99 d) | crsdata | ACTL - 1978 | | | | | 96
(23.4 h) | crsdata | ACTL - 1978 | | | | | 97
(1.25 h) | crsdata | ACTL - 1978 | | | | | 98
(51 m) | crsdata | ACTL - 1978 | | | | | 99
(2.6 m) | - | | | | | | 100
(3 s) | crsdata | ACTL - 1978 | | | # Pb - Lead (Z = 82) | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 203
(2.164 d) | - | | | | | 204
(1.4%) | | - | | | | | | 205
(1.57 y) | - | | | | | 206
(24.1%) | | - | | | | | 207
(22.1%) | | - | | | | | 208
(52.4%) | | - | | | | | | 209
(3.25 h) | - | | | | # Rb - Rubidium (Z = 37) | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 82
(6.47 h) | - | | | | | | 83
(86.2 d) | - | | | | | | 84
(33.2 d) | - | | | | | 85
(72.17%) | | - | | | | | | 86
(18.65 d) | - | | | | | 87
(27.83%) | | - | | | | # Re - Rhenium (Z = 75) | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 183
(70 d) | - | | | | | | 184
(35 d) | - | | | | | 185
(37.4 %) | | - | | | | | | 186
(3.718 d) | - | | | | | 187
(62.6%) | | - | | | | | | 188
(17.004 h) | - | | | | | | 189
(24 h) | - | | | | #### Rh - Rhodium (Z = 45) #### Production/Depletion for Rhodium Isotopes | Reaction T | arget | Product | Target | Reaction | Product | MT | Reactions | ZAID on
Dosimetry Files | |------------|-------|---------|--------|------------------|------------------|----|-----------|----------------------------| | | 1 | | 102gRh | | | | | 0.00 | | | 2 | | 103mRh | | | | | 0.00 | | 1 2 | 3 | 2 | 103gRh | (n,n')
(n,2n) | 103mRh
102gRh | | 4
16 | 45103.303 | The ACTL data is discussed in (Little and Seamon 1987) with the production/depletion reactions shown above. Hoffman2009c is discussed in (Gray and Lee 2012) and (Hoffman, Kelley et al. 2006). | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest (Half-
Life) | Cross
Section
Libraries | Evaluated
Data | Theoretical
Needs | Experimental
Needs | |--|--
-------------------------------|-------------------|----------------------|-----------------------| | | 96
(9.6 m) | Hoffman2009c | LLNL 2006 | | | | | 96m | Hoffman2009c | LLNL 2006 | | | | | 97
(46 m) | Hoffman2009c | LLNL 2006 | | | | | 97m | | LLNL 2006 | | | | | 98
(8.7 m) | | LLNL 2006 | | | | | 98m | Hoffman2009c | LLNL 2006 | | | | | 99
(16 d) | Hoffman2009c | LLNL 2006 | | | | | 99m | Hoffman2009c | LLNL 2006 | | | | | 100
(20.8 h) | Hoffman2009c | LLNL 2006 | | | | | 101
(3.3 y) | Hoffman2009c | LLNL 2006 | | | | | 101m
(4.35 d) | | LLNL 2006 | | | | | 102
(3.74 y) | Hoffman2009c | LLNL 2006 | | | | Stable
Isotopes
(Percent
Abundance) | Isotopes Isotopes of (Percent Interest (Half- | | Evaluated
Data | Theoretical
Needs | Experimental
Needs | |--|---|--------------|-------------------|----------------------|-----------------------| | | 102 m
(207 d) | Hoffman2009c | LLNL 2006 | | | | 103
(100%) | | Hoffman2009c | LLNL 2006 | | | | | 103m | Hoffman2009c | LLNL 2006 | | | | | 104
(4.36 m) | Hoffman2009c | LLNL 2006 | | | | | 104m | Hoffman2009c | LLNL 2006 | | | | | 105
(35.4 h) | Hoffman2009c | LLNL 2006 | | | | | 105m | Hoffman2009c | LLNL 2006 | | | | | 106
(2.18 h) | Hoffman2009c | LLNL 2006 | | | | | 160m | Hoffman2009c | LLNL 2006 | | | ## Sc - Scandium (Z = 21) # Production/Depletion for Scandium Isotopes | Reaction | Target | Product | Target | Reaction | Product | MT Reactions | ZAID on
Dosimetry Files | |-------------------------|------------------|-------------------------|--------|--|---|---------------------------------------|----------------------------| | | 1 - | | 43g\$c | | | | 0.00 | | 1
2
3 | 2
2
2 | FPP
4 | 44mSc | (n.2n)
(n.ds)
(n.g) | 43gSc
FPP
45gSc | 16
103,107
102 | 21044.313 | | 5
6 | 3 | FPP
4 | 44gSc | (n,2n)
(n,ds)
(n,g) | 43gSc
FPP
45gSc | 16
103,107
102 | 21044.303 | | 7
8
9
10
11 | 4
4
4 | 9
2
FPP
5
6 | 45gSc | (n,2n)
(n,2n)
(n,ds)
(n,g)
(n,g) | 44gSc
44mSc
FPP
46mSc
46gSc | 16
1016
103, 107
102
1102 | 21045.303 | | 12
13
14 | 5
5 | 4
FPP
7 | 46mSc | (n,2n)
(n,ds)
(n,g) | 45gSc
FPP
47gSc | 16
103, 107
102 | 21046.313 | | 15
16
17 | 6 | FPP
7 | 46gSc | (n,2n)
(n,ds)
(n,g) | 45gSc
FPP
47gSc | 16
103, 107
102 | 21046.303 | | 18
19
20
21 | 7
7
7
7 | 6
4
FPP
8 | 47gSc | (n,2n)
(n,3n)
(n,ds)
(n,g) | 46gSc
45gSc
FPP
48gSc | 16
17 See Note
103,107
102 | 21047.303 | | 22
23
24
25 | 8
8 | 7
6
FPP
9 | 48gSc | (n,2n)
(n,3n)
(n,ds)
(n,g) | 47g\$c
46g\$c
FPP
49g\$c | 16
17 See Note
103,107
102 | 21048.303 | | | 9 | | 49g\$c | | | | 0.00 | Note: Threshold for this reaction is above 17.0 MeV | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 44 | | | | | | | (2.442 d) | | | | | | | 44m | | | | | | | | | | | | | 45
(100%) | | | | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 46 | | | | | | | (83.81 d) | | | | | | | 46m | | | | | | | 47 | | | | | | | (3.349 d) | | | | | | | 48
(43.7 h) | | | | | | | 49
(57.3 m) | | | | | ## Ta - Tantalum (Z = 73) Table VII Production/Depletion for Tantalum Isotopes | | | | | | | Too topes | | |----------------------------------|------------------|------------------------------|--------|--|---|-----------------------------------|----------------------------| | Reaction | Target
1 | Product | | Reaction | Product | MT Reactions | ZAID on
Dosimetry Files | | | | | 177gTa | | | | 0.00 | | | 2 | | 178gTa | | | | 0.00 | | 1
2
3
4
5 | ******* | 2
1
FPP
4
5 | 179gTa | (n,2n)
(n,3n)
(n,ds)
(n,g)
(n,g) | 1789Ta
1779Ta
FPP
180mTa
180gTa | 16
17
103
102
1102 | 73179.303 | | 6
7
8
9 | 4
4
4 | 3
2
FPP
6 | 180mTa | (n,2n)
(n,3n)
(n,ds)
(n,g) | 179gTa
178gTa
FPP
181gTa | 16
17
103
102 | 73180.313 | | 10
11
12
13 | 5
5
5 | 3
2
FPP
6 | 180gTa | (n,2n)
(n,3n)
(n,ds)
(n,g) | 179gTa
178gTa
FPP
181gTa | 16
17
28,103,104,107 | 73180.303 | | 14
15
16
17
18
19 | 6
6
6
6 | 5
4
3
FPP
7
8 | 181gTa | (n.2n)
(n.2n)
(n.3n)
(n.ds)
(n.g)
(n.g) | 180gTa
180mTa
179gTa
FPP
182mTa
182gTa | 16
1016
17
22,103
102 | 73181.303 | | 20
21
22
23 | 7
7
7
7 | 6
4
FPP
9 | 182mTa | (n,2n)
(n,3n)
(n,ds)
(n,g) | 181gTa
180mTa
FPP
183gTa | 16
17
103
102 | 73182.313 | | 24
25
26
27 | 8
8
8 | 6
4
FPP
9 | 182gTa | (n,2n)
(n,3n)
(n,ds)
(n,g) | 181gTa
180mTa
FPP
183gTa | 16
17
103
102 | 73182.303 | | 28
29
30
31 | 9
9
9 | 8
6
FPP
10 | 183gTa | (n,2n)
(n,3n)
(n,ds)
(n,g) | 182gTa
181gTa
FPP
184gTa | 16
17
103
102 | 73183.303 | | 32
33
34 | 10
10
10 | 9
8
11 | 184gTa | (n,2n)
(n,3n)
(n,g) | 183gTa
182gTa
185gTa | 16
17
102 | 73184.303 | | | 11 | , | 185gTa | | | | 0.00 | | 35
36
37 | 12
12
12 | 11
10
13 | 186gTa | (n,2n)
(n,3n)
(n,g) | 1859Ta
1849Ta
1879Ta | 16
17
102 | 73186.303 | | | 13 | , | 187gTa | | | | 0.00 | | | | | | | | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 179
(1.82 y) | crsdata | ACTL 1978 | | | | 180
(0.01%) | | crsdata | ACTL 1978 | | | | | 180m | crsdata | ACTL 1978 | | | | 181
(99.99%) | | crsdata | ACTL 1978 | | | | | 182
(114.43 d) | crsdata | ACTL 1978 | | | | | 182m | crsdata | ACTL 1978 | | | | | 183
(5.1 d) | crsdata | ACTL 1978 | | | | | 184
(8.7 h) | crsdata | ACTL 1978 | | | | | 185 | - | | | | | | 186 | crsdata | ACTL 1978 | | | # Tb - Terbium (Z = 65) | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | 159
(100%) | | - | | | | | | 160
(72.3 d) | - | | | | | | 161
(6.91 d) | - | | | | | | 162
(7.6 m) | - | | | | ## TI - Thallium (Z = 81) #### Production/Depletion for Thallium Isotopes | Reaction | Target | Product | Target | Reaction | Product | MT Reactions | ZAID on
Dosimetry Files | |----------------------|-------------|--------------------|---------|-------------------------------------|-----------------------------------|----------------------------|----------------------------| | | 1 | | 200gT I | | - | | 0.00 | | | 2 | | 201gT1 | | | | 0.00 | | 1
2
3
4 | 3 | 2
1
FPP
4 | 202gT1 | (n,2n)
(n,3n)
(n,ds)
(n,g) | 201gT1
200gT1
FPP
203gT1 | 16
17
28,103
102 | 81202.303 | | 5
6
7
8 | 4
4
4 | 3
2
FPP
5 | 203gT1 | (n,2n)
(n,3n)
(n,ds)
(n,g) | 202gT1
201gT1
FPP
204gT1 | 16
17
28, 103
102 | 81203.303 | | 9
10
11
12 | 5
5
5 | 4
3
FPP
6 | 204gT1 | (n,2n)
(n,3n)
(n,ds)
(n,g) | 203gT1
202gT1
FPP
205gT1 | 16
17
28,103
102 | 81204.303 | | 13
14
15
16 | 6
6
6 | 5
4
FPP
7 | 205gT1 | (n,2n)
(n,3n)
(n,ds)
(n,g) | 204gT1
203gT1
FPP
206gT1 | 16
17
28.103
102 | 81205.303 | | | 7 | | 206gT1 | | | | 0.00 | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 200
(1.087 d) | - | | | | | | 201
(3.043 d) | - | | | | | | 202
(12.23 d) | crsdata | ACTL 1978 | | | | 203
(29.52%) | | crsdata | ACTL 1978 | | | | | 204
(3.78 y) | crsdata | ACTL 1978 | | | | 205
(70.48%) | | crsdata | ACTL 1978 | | | #### Tm - Thulium (Z = 69) Original Y, Ir, and Tm evaluations were performed 1979-1981 by Ed Arthur in T-2 at LANL. The t16_rc_2004 data is discussed in (White 2005). Tm libraries may have come from C-INC before 1973 and Ed Arthur updated the (n,g) for 169 and 170 later. Validation of some cross sections is discussed in (Chadwick,
Frankle et al. 2007). The RC2004_618 is discussed in (Trellue and White 2006) and (Trellue and White 2006). Reviews of the chains were done by (Little and Seamon 1986). | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated
Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|-------------------|----------------------|-----------------------| | | 166 | rc2006_618 | LANL 2004 | | | | | (7.70 h) | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | 167 | rc2006_618 | LANL 2004 | | | | | (9.24 d) | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | 168 | rc2006_618 | LANL 2004 | | | | | (93.1 d) | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | 169 | | rc2006_618 | LANL 2004 | | | | (100%) | | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | 170 | rc2006_618 | LANL 2004 | | | | | (128.6 d) | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated
Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|-------------------|----------------------|-----------------------| | | 171 | rc2006_618 | LANL 2004 | | | | | (1.92 y) | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | 172 | rc2006_618 | LANL 2004 | | | | | (2.65 d) | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | 173 | rc2006_618 | LANL 2004 | | | | | (8.2 h) | rc2004_618 | LANL 2004 | | | | | | t16_rc_2004 | LANL 2004 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | # V - Vanadium (Z = 23) | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 47
(32.6 m) | - | | | | | | 48
(15.98 d) | - | | | | | | 49
(331 d) | - | | | | | 50
(0.25%) | | - | | | | | 51
(99.75% | | - | | | | | | 52
(3.76 m) | - | | | | W - Tungsten (Z = 74) Production/Depletion for Tungsten Isotopes | Reaction | | Product | | Reaction | Product | MT Reactions | ZAID on
Dosimetry Files | |----------------------|----------------------|---------------------|-------|-------------------------------------|----------------------------------|--------------------------------------|----------------------------| | | 1 | | 177gW | | | | 0.00 | | | 2 | | 178gW | | | | 0.00 | | 1
2
3 | 3
3
3 | 2
1
4 | 179gW | (n,2n)
(n,3n)
(n,g) | 178gw
177gw
180gw | 16
17
102 | 74179.303 | | 4
5
6
7 | 4
4
4 | 3
2
FPP
5 | 180gW | (n,2n)
(n,3n)
(n,ds)
(n,g) | 179gW
178gW
FPP
181gW | 16
17
28, 103, 104, 107
102 | 74180.303 | | 8
9
10 | 5
5 | 4
3
6 | 181gW | (n,2n)
(n,3n)
(n,g) | 180gW
179gW
182gW | 16
17
102 | 74181.303 | | 11
12
13
14 | 6
6
6 | 5
4
FPP
7 | 182gW | (n,2n)
(n,3n)
(n,ds)
(n,g) | 181gW
180gW
FPP
183gW | 16
17
22,103,107
102 | 74182.303 | | 15
16
17
18 | 7
7
7
7 | 6
5
FPP
8 | 183gW | (n,2n)
(n,3n)
(n,ds)
(n,g) | 182gW
181gW
FPP
184gW | 16
17
28,22,103,104,107
102 | 74183.303 | | 19
20
21
22 | 8
8
8 | 7
6
FPP
9 | 184gW | (n,2n)
(n,3n)
(n,ds)
(n,g) | 183gW
182gW
FPP
185gW | 16
17
28,103,104,107
102 | 74184.303 | | 23
24
25 | 9 | 8
7
10 | 185gW | (n,2n)
(n,3n)
(n,g) | 184gW
183gW
186gW | 16
17
102 | 74185.303 | | 26
27
28
29 | 10
10
10
10 | 9
8
FPP
11 | 186gW | (n,2n)
(n,3n)
(n,ds)
(n,g) | 185gW
184gW
FPP
187gW | 16
17
22,103,107 | 74186.303 | | 30
31
32
33 | 11
11
11 | 10
9
8
12 | 187gW | (n,2n)
(n,3n)
(n,4n)
(n,g) | 186gW
185gW
184gW
188gW | 16
17
37
102 | 74187.303 | | 34
35
36 | 12
12
12 | 11
10
13 | 188gW | (n.2n)
(n.3n)
(n.g) | 187gw
186gw
189gw | 16
17
102 | 74188.303 | | | 13 | | 189gW | | | | 0.00 | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | 179 | crsdata | ACTL 1978 | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest
(Half-Life) | Cross
Section
Libraries | Evaluated Data | Theoretical
Needs | Experimental
Needs | |--|---|-------------------------------|----------------|----------------------|-----------------------| | | (37.8 m) | | | | | | 180
(0.12%) | | crsdata | ACTL 1978 | | | | | 181
(121.2 d) | crsdata | ACTL 1978 | | | | 182
(26.50%) | | crsdata | ACTL 1978 | | | | 183
(14.31%) | | crsdata | ACTL 1978 | | | | 184
(30.64%) | | crsdata | ACTL 1978 | | | | | 185
(74.3 d) | crsdata | ACTL 1978 | | | | 186
(28.43%) | | crsdata | ACTL 1978 | | | | | 187
(23.9 h) | crsdata | ACTL 1978 | | | | | 188
(69.75 d) | crsdata | ACTL 1978 | | | | | 189
(19.7 m) | - | | | | #### Y - Yttrium (Z = 39) The Y production/depletion chain is shown below taken from (Seamon 1989). Yttrium Production/Depletion Chain This nicer version below is from (Chadwick, Frankle et al. 2007). Original Y, Ir, and Tm evaluations were performed 1979-1981 by Ed Arthur in T-2 at LANL. The t16_rc_2004 data is discussed in (White 2005), Hoffman2009 in (Gray and Lee 2012) and (Hoffman, Kelley et al. 2006), and the crsllnl is discussed in (Seamon 1989). Validation of some cross sections is discussed in (Chadwick, Frankle et al. 2007). Impact of new Y cross sections on 88Y(n,2n)87Y is discussed in (Chadwick, Kawano et al. 2004). The RC2004_618 is discussed in (Trellue and White 2006) and (Trellue and White 2006). Reviews of the chains were done by (Little and Seamon 1986) and (Seamon 1986). | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest (Half-
Life) | Cross
Section
Libraries | Evaluated
Data | Theoretical
Needs | Experimental
Needs | |--|--|-------------------------------|-------------------|----------------------|-----------------------| | | 84 | Hoffman2009c | LLNL 2006 | | | | | (40 m) | | | | | | | 84m | Hoffman2009c | LLNL 2006 | | | | Ctoble | Dedicactive | Cuasa | Evaluated | Theoretical | Everyimental | |--------------------|-------------------------|------------------|-------------------|----------------------|--------------------| | Stable
Isotopes | Radioactive Isotopes of | Cross
Section | Evaluated
Data | Theoretical
Needs | Experimental Needs | | (Percent | Interest (Half- | Libraries | Dala | Neeus | Neeus | | Abundance) | Life) | Librarios | | | | | | | | | | | | | 85 | Hoffman2009c | LLNL 2006 | | | | | | Hollmanzoosc | LLINL 2006 | | | | | (4.9 h) | | | | | | | 85m | Hoffman2009c | LLNL 2006 | | | | | | | | | | | | 86 | Hoffman2009c | LLNL 2006 | | | | | (14.74 h) | rc2006_618 | LANL 1980 | | | | | | rc2004_618 | LANL 1980 | | | | | | t16_rc_2004 | LANL 1980 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | | crsllnl | LLNL <1989 | | | | | 86m | Hoffman2009c | LLNL 2006 | | | | | | | | | | | | 87 | Hoffman2009c | LLNL 2006 | | | | | (3.35 d) | rc2006_618 | LANL 1980 | | | | | (0.00 4) | rc2004 618 | LANL 1980 | | | | | | t16_rc_2004 | LANL 1980 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | | crsllnl | LLNL <1989 | | | | | 87m | Hoffman2009c | LLNL 2006 | | | | | 07111 | rc2006_618 | LANL 1980 | | | | | | rc2004_618 | LANL 1980 | | | | | | t16_rc_2004 | LANL 1980 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | | crsllnl | LLNL <1989 | | | | | 88 | Hoffman2009c | LLNL 2006 | | | | | (106.63 d) | rc2006 618 | LANL 1980 | | | | | (100.00 a) | rc2004_618 | LANL 1980 | | | | | | t16 rc 2004 | LANL 1980 | | | | | | crsdata | LANL 1980 | | | | | | y21grp | LANL 1980 | | | | | | y21grp_n | LANL 1980 | | | | | | crsllnl | LLNL <1989 | | | | | 00~0 | | | | | | | 88m2 | Hoffman2009c | LLNL 2006 | | | | | | rc2006_618 | LANL 1980
| | | | | | rc2004_618 | LANL 1980 | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest (Half-
Life) | Cross
Section
Libraries | Evaluated
Data | Theoretical
Needs | Experimental
Needs | |--|--|---|---|----------------------|-----------------------| | | | t16_rc_2004
crsdata
y21grp
y21grp_n
crsllnl | LANL 1980
LANL 1980
LANL 1980
LANL 1980
LLNL <1989 | | | | | 88m1 | Hoffman2009c
rc2006_618
rc2004_618
t16_rc_2004
crsdata
y21grp
y21grp_n
crsllnl | LLNL 2006
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LLNL <1989 | | | | 89
(100%) | | Hoffman2009c
rc2006_618
rc2004_618
t16_rc_2004
crsdata
y21grp
y21grp_n
crsllnl | LLNL 2006
LANL 2004
LANL 2004
LANL 1980
LANL 1980
LANL 1980
LANL 1980 | | | | | 89m | Hoffman2009c
rc2006_618
rc2004_618
t16_rc_2004
crsdata
y21grp
y21grp_n
crsllnl | LLNL 2006
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LLNL <1989 | | | | | 90
2.669 d | Hoffman2009c
rc2006_618
rc2004_618
t16_rc_2004
crsdata
y21grp
y21grp_n
crsllnl | LLNL 2006
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LLNL <1989 | | | | | 90m | Hoffman2009c
rc2006_618
rc2004_618
t16_rc_2004
crsdata
y21grp | LLNL 2006
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980 | | | | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest (Half-
Life) | sotopes of Section
erest (Half- Libraries | | Theoretical
Needs | Experimental
Needs | |--|--|---|---|----------------------|-----------------------| | | | y21grp_n
crsllnl | LANL 1980
LLNL <1989 | | | | | 91
(58.5 d) | Hoffman2009c
rc2006_618
rc2004_618
t16_rc_2004
crsdata
y21grp
y21grp_n
crsllnl | LLNL 2006
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LLNL <1989 | | | | | 91m | Hoffman2009c | LLNL 2006 | | | | | 92
(3.54 h) | Hoffman2009c
rc2006_618
rc2004_618
t16_rc_2004
crsdata
y21grp
y21grp_n
crsllnl | LLNL 2006
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LANL 1980
LLNL <1989 | | | | | 93
(10.2 h) | Hoffman2009c | LLNL 2006 | | | | | 93m | Hoffman2009c | LLNL 2006 | | | ## Zr - Zirconium (Z = 40) | | | | Product | ion/Deple | tion for Z | irconium Isotopes | | |----------------------------|------------------|---------------------|-------------------|---|--------------------------------|-------------------------------------|----------------------------| | Reaction | Target
1 | Produc | t Targe:
88gZr | t Reactio | n Product | MT Reactions | ZAID on
Dosimetry Files | | 1
2
3 | 2 2 2 | FPP
3 | 89gZr | (n,2n)
(n,ds)
(n,g) | 889Zr
FPP
90gZr | 16
103, 107
102 | 0.00
40089.303 | | 5
6
7 | 3
3
3 | FPP
4 | 90gZr | (n,2n)
(n,ds)
(n,g) | 89gZr
FPP
91gZr | 16
28,103,104,107
102 | 40090.303 | | 8
9
10 | 4 4 | 3
2
FPP
5 | 91gZr | (n,2n)
(n,3n)
(n,ds)
(n,g) | 90gZr
89gZr
FPP
92gZr | 16
17 See Note
28,103,104,107 | 40091.303 | | 11
12
13
14 | 5
5
5 | 4
3
FPP
6 | 92gZr | (n,2n)
(n,3n)
(n,ds)
(n,g) | 91gZr
90gZr
FPP
93gZr | 16
17
28, 103, 104, 107 | 40092.303 | | 15
16
17
18 | 6
6
6 | 5
4
FPP
7 | 93gZr | (n.2n)
(n.3n)
(n.ds)
(n.g) | 92gZr
91gZr
FPP
94gZr | 16
17
103, 107 | 40093.303 | | 19
20
21
22 | 7
7
7
7 | 6
5
FPP
8 | 94gZr | (n,2n)
(n,3n)
(n,ds)
(n,g) | 93gZr
92gZr
FPP
95gZr | 16
17
22, 103, 107 | 40094,303 | | 23
24
25
26 | 8
8
8 | 7
6
FPP
9 | 95gZr | (n.2n)
(n.3n)
(n.ds)
(n,g) | 94gZr
93gZr
FPP
96gZr | 102
16
17
103, 107
102 | 40095.303 | | 27
28
29
30
31 | 9 10 10 10 10 10 | 8
8
FPP
11 | 97gZr | (n,2n)
(n,2n)
(n,3n)
(n,ds)
(n,g) | 95gZr
96gZr
95gZr
FPP | 16
16
17
107 | 40096.303
40097.303 | | | 11 | , | 98gZr | | 98gZr | 102 | 0.00 | | Note: | Thresho | ld for t | his rea | ction is | above 17.0 | Mev | | The ACTL data is discussed in (Little and Seamon 1987) with the production/depletion reactions shown above. Hoffman2009 is discussed in (Gray and Lee 2012) and (Hoffman, Kelley et al. 2006). | Stable
Isotopes
(Percent
Abundance) | Radioactive
Isotopes of
Interest (Half-
Life) | Cross
Section
Libraries | Evaluated
Data | Theoretical
Needs | Experimental
Needs | |--|--|-------------------------------|------------------------|----------------------|-----------------------| | | 86
(14.74 h) | Hoffman2009c | LLNL 2006 | | | | | 87
(1.71 h) | Hoffman2009c | LLNL 2006 | | | | | 87m | Hoffman2009c | LLNL 2006 | | | | | 88
(83.4 d) | Hoffman2009c | LLNL 2006 | | | | | 89
(3.27 d) | Hoffman2009c
crsdata | LLNL 2006
ACTL 1976 | | | | | 89m | Hoffman2009c | LLNL 2006 | | | | 90
(51.45%) | | Hoffman2009c
crsdata | LLNL 2006
ACTL 1976 | | | | | 90m3 | Hoffman2009c | LLNL 2006 | | | | | 90m2 | Hoffman2009c | LLNL 2006 | | | | | 90m1 | Hoffman2009c | LLNL 2006 | | | | 91
(11.22%) | | Hoffman2009c
crsdata | LLNL 2006
ACTL 1976 | | | | | 91m | Hoffman2009c | LLNL 2006 | | | | 92
(17.15%) | | Hoffman2009c
crsdata | LLNL 2006
ACTL 1976 | | | | | 93
(1.5 10 ⁶ y) | Hoffman2009c
crsdata | LLNL 2006
ACTL 1976 | | | | 94
(17.38%) | | Hoffman2009c
crsdata | LLNL 2006
ACTL 1976 | | | | | 95
(64.02 d) | Hoffman2009c
crsdata | LLNL 2006
ACTL 1976 | | | | 96
(2.80% | | Hoffman2009c
crsdata | LLNL 2006
ACTL 1976 | | | | | 97
(16.75 h) | crsdata | ACTL 1976 | | | #### References Chadwick, M. B., et al. (2007). "Evaluated Iridium, Yttrium and Thulium Cross Sections and Integral Validation Against Critical Assembly and Bethe Sphere Measurements." <u>Nuclear Data Sheets</u> **108**(2716). Chadwick, M. B., et al. (2004). "New Yttrium Evaluated Cross Sections and Impact on 88Y(n,2n)87Y Radchem." UCRL-TR **202884**. Gray, M. G. and M. B. Lee (2012). "NDI Multigroup Radiochemistry Dosimetry Library Hoffman2009." XCP-5 12-31. Herring, A. M. (2008). "Release of Special NDI Library for Arsenic, as 2008." LA-UR 08(04964). Hoffman, R. D., et al. (2006). "Modeled Neutron and Charged-Particle Induced Nuclear Reaction Cross Sections for Radiochemisty in the Region of Yttrium, Zirconium, Niobium and Molybdenum." <u>UCRL-TR</u> **222275**. Lee, M. B. (2013). "Neutron Dosimetry Libraries and radiochemistry Chains for Arsenic and Uranium." XCP-5 **13**(006 (U)). Little, R. C. and R. E. Seamon (1986). "A Review of the Dosimetry Files for Y, Tm and Ir Chains." X-6 RES-86-189. Little, R. C. and R. E. Seamon (1987). "Multigroup Cross Sections from ACTL for Eleven Reaction Chains." X-6 **RES-RCL-87-418**. Mroz, E. J. (1992). "Arsenic Counting Revisited." ILWOG 31. Seamon, R. E. (1986). "Mutigroup Cross Sections for Y, Tm and Ir Chains." X-6 RES-86-233. Seamon, R. E. (1988). "Multigroup Cross Sections from ACTL for Niobium Chain." X-6 RES-88-308. Seamon, R. E. (1989). "Comparing Yttrium Production/Depletion Cross Sections from Livermore and Los Alamos." X-6 **RES-89-100**. Seamon, R. E. (1989). "Yttrium Production/Depletion Cross Sections from LLNL." X-6 RES-89-92. Talou, P., et al. (2006). "Evaluation of Ir-191 and Ir-193 (n,xn) Reactions." <u>LAUR</u> **06-4956**. This memo describes T16 evaluations for both n+Ir-191 and n+Ir-193 reactions, as of June 2006. They are based on both model calculations and experimental data from GEANIE/LANSCE experiments and critical assembly integral data. Trellue, H. and M. White (2006). "Description of process Used to create 618-group radiochemistry libraries, including the new metastable state naming scheme." X-1 06-09. Trellue, H. and M. White (2006). "Release of New NDI Library RC2004_618 Radiochemistry Data in 618 Groups." X-1 HT-06-08. White, M. C. (2004). "The CRSData Dosimetry Library." X-5 MCW-04-87. White, M. C. (2005). "NDI Multigroup Radiochemistry Dosimetry Library T16_RC_2004." X-5 MCW-04-32. #### Distribution | LDRD Program Office William Priedhorsky | LDRD | Laura Stonehill | LDRD | |---|--|---|--| | LDRD Committee Members
Steve Becker
Eva Birnbaum | XTD-NTA
SPO-SC | Melissa Douglas | XTD-DO | | RLM's Todd Bredeweg Melynda Brooks Mark Chadwick Vincenzo Cirigliano Scott Doebling Pat Fitch Marianne Francois Mike Furlanetto Anna Hayes-Sterbenz Kevin
John Joel Kress Mark Makela Mark Mccleskey Shea Mosby | C-NR P-3 ALDX T-2 XCP-DO ALDCELS T-DO ALDPS T-2 C-DO T-DO P-3 C-DO P-3 | Charles Nakhleh Warren Oldham Tanja Pietrass Jeffrey Pietryga Eric Pitcher David Podlesak Mark Schraad Hugh Selby Patrick Talou Felicia Taw Toni Taylor Jacqueline Veauthier Morgan White | ALDX
C-NR
P-DO
C-IIAC
P-DO
C-NR
XCP-DO
C-NR
XCP-5
C-DO
ALDPS
C-IIAC
W-13 | | Evelyn Bond Todd Bredeweg Aaron Couture Brad DiGiovine Michael Fassbender Anna Hayes-Sterbenz August Keksis Paul Koehler | C-NR C-NR P-3 P-3 C-IIAC T-2 C-NR P-3 | Artem Matyskin Kent Parsons Gencho Rusev Athanasios Stamatopoulos John Ullmann Etienne Vermeulen Morgan White | C-IIAC
XCP-5
C-NR
P-3
P-3
C-IIAC
W-13 |